CHL1 Functions as a Nitrate Sensor in Plants
نویسندگان
چکیده
Ions serve as essential nutrients in higher plants and can also act as signaling molecules. Little is known about how plants sense changes in soil nutrient concentrations. Previous studies showed that T101-phosphorylated CHL1 is a high-affinity nitrate transporter, whereas T101-dephosphorylated CHL1 is a low-affinity transporter. In this study, analysis of an uptake- and sensing-decoupled mutant showed that the nitrate transporter CHL1 functions as a nitrate sensor. Primary nitrate responses in CHL1T101D and CHLT101A transgenic plants showed that phosphorylated and dephosphorylated CHL1 lead to a low- and high-level response, respectively. In vitro and in vivo studies showed that, in response to low nitrate concentrations, protein kinase CIPK23 can phosphorylate T101 of CHL1 to maintain a low-level primary response. Thus, CHL1 uses dual-affinity binding and a phosphorylation switch to sense a wide range of nitrate concentrations in the soil, thereby functioning as an ion sensor in higher plants. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
منابع مشابه
The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis.
The movement of guard cells in stomatal complexes controls water loss and CO(2) uptake in plants. Examination of the dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) revealed that it is expressed and functions in Arabidopsis guard cells. CHL1 promoter-beta-glucuronidase and CHL1 promoter-green fluorescent protein constructs showed strong expression in guard cells, and immunolocalization e...
متن کاملCloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake.
The Arabidopsis CHL1 (AtNRT1) gene encodes an inducible component of low-affinity nitrate uptake, which necessitates a "two-component" model to account for the constitutive low-affinity uptake observed in physiological studies. Here, we report the cloning and characterization of a CHL1 homolog, AtNRT1:2 (originally named NTL1), with data to indicate that this gene encodes a constitutive compone...
متن کاملCHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake.
Higher plants have both high- and low-affinity nitrate uptake systems. These systems are generally thought to be genetically distinct. Here, we demonstrate that a well-known low-affinity nitrate uptake mutant of Arabidopsis, chl1, is also defective in high-affinity nitrate uptake. Two to 3 hr after nitrate induction, uptake activities of various chl1 mutants at 250 microM nitrate (a high-affini...
متن کاملThe Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake.
The CHL1 (NRT1) gene of Arabidopsis encodes a nitrate-inducible nitrate transporter that is thought to be a component of the low-affinity (mechanism II) nitrate-uptake system in plants. A search was performed to find high-affinity (mechanism I) uptake mutants by using chlorate selections on plants containing Tag1 transposable elements. Chlorate-resistant mutants defective in high-affinity nitra...
متن کاملThe Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth.
The AtNRT1.1 (CHL1) transporter provides a primary mechanism for nitrate uptake in Arabidopsis and is expected to localize to the epidermis and cortex of the mature root, where the bulk of nitrate uptake occurs. Using fusions to GFP/GUS marker genes, we found CHL1 expression concentrated in the tips of primary and lateral roots, with very low signals in the epidermis and cortex. A time-course s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 138 شماره
صفحات -
تاریخ انتشار 2009